TEKS: Mathematics

(1) Number, operation, and quantitative reasoning. The student understands that different forms of numbers are appropriate for different situations. The student is expected to:
(A) compare and order rational numbers in various forms including integers, percents, and positive and negative fractions and decimals;
(B) select and use appropriate forms of rational numbers to solve real life problems including those involving proportional relationships;
(C) approximate (mentally and with calculators) the value of irrational numbers as they arise from problem situations (such as 回, ②);
(2) Number, operation, and quantitative reasoning. The student selects and uses appropriate operations to solve problems and justify solutions. The student is expected to:
(A) select appropriate operations to solve problems involving rational numbers and justify the selections;
(B) use appropriate operations to solve problems involving rational numbers in problem situations;
(C) evaluate a solution for reasonableness; and
(D) use multiplication by a given constant factor (including unit rate) to represent and solve problems involving proportional relationships including conversions between measurement systems.
(3) Patterns, relationships, and algebraic thinking. The student identifies proportional or non-proportional linear relationships in problem situations and solves problems. The student is expected to:
(A) compare and contrast proportional and non-proportional linear relationships; and
(B) estimate and find solutions to application problems involving percents and other proportional relationships such as similarity and rates.
(4) Patterns, relationships, and algebraic thinking. The student makes connections among various representations of a numerical relationship. The student is expected to generate a different representation of data given another representation of data (such as a table, graph, equation, or verbal description).
(5) Patterns, relationships, and algebraic thinking. The student uses graphs, tables, and algebraic representations to make predictions and solve problems. The student is expected to:
(A) predict, find, and justify solutions to application problems using appropriate tables, graphs, and algebraic equations; and
(B) find and evaluate an algebraic expression to determine any term in an arithmetic sequence (with a constant rate of change).
(14) Underlying processes and mathematical tools. The student applies Grade 8 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school. The student is expected to:
(A) identify and apply mathematics to everyday experiences, to activities in and outside of school, with other disciplines, and with other mathematical topics;
(B) use a problem-solving model that incorporates understanding the problem, making a plan, carrying out the plan, and evaluating the solution for reasonableness;
(C) select or develop an appropriate problem-solving strategy from a variety of different types, including drawing a picture, looking for a pattern, systematic guessing and checking, acting it out, making a table, working a simpler problem, or working backwards to solve a problem; and
(D) select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems.
(15) Underlying processes and mathematical tools. The student communicates about Grade 8 mathematics through informal and mathematical language, representations, and models. The student is expected to:
(A) communicate mathematical ideas using language, efficient tools, appropriate units, and graphical, numerical, physical, or algebraic mathematical models; and
(B) evaluate the effectiveness of different representations to communicate ideas.
(16) Underlying processes and mathematical tools. The student uses logical reasoning to make conjectures and verify conclusions. The student is expected to:
(A) make conjectures from patterns or sets of examples and nonexamples; and
(B) validate his/her conclusions using mathematical properties and relationships.

